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The Amaryllidaceaealkaloids have long been a source of

of this endeavor was the ability to overcome the normal
propensity foro-alkoxy substituents on the arene moiety to
promote ipso bond formation during the photocyclization

structurally intriguing target molecules that continue to challenge event’® This would be accomplished by exploiting possible

the capabilities of contemporary organic synthés/ithin this

intramolecular hydrogen bonding between the C7 hydroxyl

group, the phenanthridone aIk'anids.of the narciclasine family group and the proximate enamide carbonyl oxygen to exert
have recently become the subject of intense synthetic study dueconformational control during the cyclization as suggested in

in large measure to their important antitumor activityndeed,
numerous syntheses of lycoricidingaf® have been reported

intermediateA .”b
The synthesis began by preparing #ysepoxy alcohols8

in recent years, as have several approaches into 7-deoxypanin optically pure form from commercially available 3-cyclo-
cratistatin ga).# In contrast, synthetic successes into the closely hexene-1-carboxylic acid employing a modification of the

related congeners narciclasirb) and pancratistatin2p) are

1a, R=H; lycoricidine
1b, R=OH; narciclasine

=H; 7-deoxypancratistatin
=OH; pancratistatin

considerably fewer in number, perhaps reflecting the additional

level of preparative difficulty introduced by the presence of the
phenolic hydroxyl group at C7. The first synthesis of racemic
pancratistatin was completed by Danishefsky and Lee in 3989,

while asymmetric approaches into the compound have been

recorded by Hudlick§ and Trosf® Recently, a formal
synthesis of this compound was disclosed by Hasetfingéo

Berchtold sequence used previously for the synthesis of cho-
rismate derivatives (eq 2).In this instance, compourfsiserves

HO, o
a, b c-e
Q 75% 30%
CO,Me CO,Me CO,Me
. . S
TBSO,, \Q

f-i

42%

CO,H
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a) NBS, AIBN, PhH, reflux; b) AIBN, BugSnH, PhH; ¢) '0,, hv,
rose bengal; d) (PhzP),RuCl,, CH,Cl,; e) NaOMe,
MeOH:; f) butyryl chloride, TEA; g) cholesterol esterase;
h) TBSCI, imidazole; i) LiOH, MeOH, H,O

date there has been no synthesis of narciclasine reported despitdS & masked form of dien€, since it has been previously

several attempts. We now present the first total synthesis of
(+)-narciclasine in enantiomerically pure form.

observed in our laboratory that unsaturation present at@B
in these systems (narciclasine numbering) was incompatible with

The synthesis strategy reported in this document features athe projected photocyclization conditions. The A ring fragment

late-stage construction of the critical Ct0@10b bond with

concomitant control of the relative stereochemistry of the
incipient trans-BC ring fusion. The key transformation for
achieving this objective is a hydrogen-bond-directed aryl

was prepared in four steps from commercial 2,3-dihydroxyben-
zaldehyde employing known chemistf. Protection as the
ethoxyethyl ether afforde@® which sets the stage for coupling
of the A and C ring fragments prior to cyclization.

enamide photocyclization of a chiral, nonracemic seco precursor

(A) possessing intact A and C ring units. Critical to the success
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Metalation of6 (n-BuLi, —78 °C) followed by addition of
the isocyanate derived froat —78 °C afforded the enamide
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Scheme 1 The requisite C3C4 unsaturation was then revealed by
processing the epoxide i@ using the Sharpless protoédl
followed by acylation of the resulting free hydroxyl functions
to give108 Stereocontrolled, cis-dihydroxylation and protection
of the resultant diol as the acetonide proceeded without incident
to give 118 in 76% yield. The double bond required at C1 was
introduced by selective deprotection of the hydroxyl group at
this location followed by dehydration with the Burgess reatfent

in refluxing benzene to afford advanced intermediz#f&in good
yield.

The synthesis end-game involved a series of deprotection
steps, one of which was the removal of the lactam PMB group,
an operation that was viewed as being particularly challenging.
Several of the usual oxidative methods for PMB group removal
were explored for this purpose to no avail; however, an

TBSO,, °

7 a, b o) @ ¢ o)
76% <0j©\l(NPMB 46% <O
O\H_.O

m °)< ' interesting procedure for selective removal of aniidbenzyl
h,i <° O o i 1b protection developed by Williams proved more succeséfin.
64% O NPMB 37% the event, routine saponification of the acetate group%2n
OAc O followed by execution of the Williams protocoh{BuLi/O)
12 on the resultant diol provided the free amide, and acid-mediated
a) PMBBr, NaH; b) PPTS, MeOH; ¢) hv, PhH; d) (PhSe), NaBH,, Ox; removal of the remaining acetonide function affordesl)-(
e) NaH, AcCl; f) OsQ,4, TMNO, t-BuOH; g) TsOH, (CH3),C(OMe),; h) F, narciclasine @ 25D 141.8, lit. 15 [(1]22D 142.8; mp: 248°C

THF ) Burgess Rgnt; j) K2COg, MeOH; k) n-Buli, THF, O,;) TsOH dec, lit15 250-2 °C dec) in 37% overall yield. The synthetic
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